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SUMMARY

The mechanism by which a statidnary~detonaﬁion wave
maintaeins itself andjérbgresses through the exp}osive is
investigated.

Reasons are found which support the fdlloWiﬁg_hypoth—, 
esis: The deténétion aneAinitiates'the detonation in the J
neighboring layer of tﬁe intacf exploéiﬁo by the discontinuity
of material velocity whieh it p;oduces. 'This aots!like & very
vehement mechanical biow (< 1,500 m seb-l), and is probably
more effective than high temperatﬁre.

" The velocity of the detonation wave is determined by
investigating all phases of ﬁhe reactioﬁ, and nob only (as usually
done hqretofore)’the completed reac%iqn; 'The‘result shows when

the so-called Chapman~Jouguétvhypothesis‘is true, and what formu=

lae are to be used when it is not true.

Detailed computations will follow. -
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Objectives, Methods and General Principles of this Report

- 1. The purpase of this report‘is ‘o éiﬁe a oonsequenﬁ theory of
the mechanism by;which a stationary detonation wgve maintains itself'énd
progresses through an exp1051ve. Subh a tﬁeory'must expiain how the hoad
of the detonatlon wave 1n1t1ates thn reactlon (and the detonatlon) in the
1ntaot exp1051Vc, and how a well—determlned constant velocity of this wave
' arases. Hoth almé can be achieved only after 0vercoming certalh‘characterw
istic difficulties. o

2. Regarding the first objeotive, fhis ought to be saids We do
_ not undertake to give a theory of . the initiation of a detonatlon Ing
general, The V1ewp01nts which we brlng up may throw some 11ght on’ that
questlon too, but our prlmary aim is to understand the mochanlsm of the
ex1st1ng.stat10nary detonatlon wave.. Here the detonatlon of each layer of
Athe 1ntact eXp1081vc is 1n1t1ated by the statlonary detonatlon wave. whlch
has already engulfed its nelghoorlng laycr.
: | In gaseous explosions this may be explained by fﬁe highstompefature
- of the extremely COmpressed gas iﬁ the détonation’zgnea 'In,solidlexéloéives
this explanation‘is hardiyvavqilable: The;detoqation wave is ver& narfow
in sPaée and moving with very high ﬁeloqity, so the chemical reactioﬁ»(which'”
suppbrts the‘detonatibn) cannot be_treated'as‘instan%aneous. Hence the
head of the detonatlon wave corresponds to the Just 1n01plent reac$1on, and |
'contalns accordingly only an 1nf1n1t951ma1 fractlon of gas. The not—yet—

.react=d solid explos1ve in it is presumably cold.‘ At any fate the hlgh
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gQS’temperaﬁures‘in'the wﬁﬁe head no longor dominate.the/piCture, and there—f
‘ fofe céﬁnot detonate the intact priSSiVGwv
We shall sec that there is morejlikélihéod in thiss Thore must |
be a diécontinuou; change.of velocify of the bulk ofrtho substénpo whioh.
crosses the wave head. This acts as a.violeﬁy‘blomg delivered at voloéitios
of{‘*?l,SOO m sec~1 uﬁder typicél cép&itions-which is probably at 1cast>as

effective as tem@erafures of v 2,5000-3;6009 ¢entigrade.l.

1Wb are thus dlsfégarding\the posélﬁllity that the detonation is prop-
agated by spocial kinds of particles (ions, ete.), moving shead of tho
wave head. Indoed, if the views whic¢h we proposc are found to be cor-

rect, no such special particles will be nceded to explain the detonation
Wave - . )

As to the second obgectlve, the present lltoraturo is domxnatod

by the so-oallcd Chepman- Jouguet hypothcols. ThlS hypothos1s prpv1des a

deflnlte value for the ve1001ty of the detonatlor wave, ‘but 1ts thoorotloal
foundatlons are not satlsfactory. The experlmental evidence is altogether
reasonably favorable to thls hypothesis, but it is not easy bto appraise

- becduse of the:sllght 1n£ormat19an@ possess conoernlng the physical proper-

fiés of the éubstances in#olved ‘under the extreme conditioné in a detoﬁation.
- All theorles on this. subJect are based on the Ranklne-Hugonlot

equatiohs of a shock Wave, whlch are actually applloatlons of the conser—

vatlpn theorems‘of mass, momentum, gnd energye The Chapman—Jouguet hypothesis

is based on a consideration ofrthese principles in fhé completéd reaction 6n1y
| We shall apply them %o all-intermgdiate_phases of the reaétion.

This necessitates the_investigatrioln of the entire family of all so-célled

Rankine-Hﬁgdniot pufées{ corresponding .to all phasés of the reaction. By

‘doing this we shall succeed in determining the velocity of the detonation

Y



wave. We find that the Chapman~Jouguot hypothos1s is true for somc forms of
the abovo—montlonod famlly of aurves, and not for others:¢ We obtaln pruGlSO
crlterla, which dotermlne when it is true, and also a general mbbhod'to
~compute the vclocity of the detonatlég wavc whicly is alwavs valld.

4, All these discu551ons arc madc 1n a geheral, as far as foa31blc
qﬁaiibatiVe, way, avoldlng dctallcd computations. Spoclflc computations
which dctormlnc tho dotonatlon veloclty for dellnlte typcu of explosives
w111 be made’ subsaquently In this oonncctlon the nuestlon is of importanco
whether the conflguratlon of the faﬁlly of curVoo mcntioncd above, for whicn
the Chapman- Jouguct hypothe31s falls to be true, evor occurs for rewl |
‘explosives. This question w111 be GOnSLdOTOd Vogether'w1th the first-
mentioned computations. In all those discus sions tho oomnr0551b111tlcs
and sﬁecific heats of solids and gases under detonation condltlons are. the
decisive factors. | |

| The prépefties of a detonation Whiéh.ﬁas notfyet‘iéached its
statlonary‘wave stﬂge will also be 1nveut1¢atﬂd laters It is to be-hopod
'that thls will connect the pr;sont theory wwth thc d1ff1cu1t questions of -
'initiating a dctonatlcn-- f-"prlmers" and "booscers.-

The presont work is restricted to ylane waves in absolutely con-
fined\explOS}VGS. The effocts of spaﬁlal o&pan51on on uphcrioél waves and
in‘tho case of partial conflnement'W1ll be considcred latera | |

Thc author flnally'w1shcs to uxpress his uhankg to Ee Erlght ﬂ¢ son,

and to R H. Kent, for whosé valuable suggestlons and” dlsouss1ons he is

greatly 1ndcbted.
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1-3 Formulation of tho Problem

1. In studying the méchaﬂism of é'dptonation the followiﬁg afproxi~
"mate pictufe sugé§sts,iféo1f; \ - » |

Imégine that“tﬁe.déténation wave moves écréSs the oxplosive in:
‘parallel planes, 1.6., everywhcre in the same dlrectlon. C£6ose this
dlrectlog_as the negatlve x-oxis. - Then conditions are constqnt in all
planes'parallelito ﬁhé;f}jg-piano; The.prlosiv? muist be confined by some
cylindrical bodndary, LeCo, by the same bounddry cur%@ in éaéh onevéf‘thb
. above parallel plahéé; Assume thig'oonfinement to be,abSolutely'unyiolding.
Assume that all motibnsvgonﬁécted,with the doﬁOnation take plaéc in the
direction of the. x~éxis, i;é,,'that theré aro:np“ttaﬁé%ersal:componénts
pa.rallel to the g,g-plane. | | | |

The lxmltatlons of this plcture are obv1ous, but 1t is usoful For

a flrst orlcntutlon.~ It ought to be essentlally correct for a heavily con-

fincd stick of explosive, detonatedjaf'ono'end surfago.L ‘

&t may even be approximately applice blc to an unconfincd stick of exp1031vc

since the great volocity of the detonation wave=-i.c., the brevity of the

available time 1nterva1--makes the 1nert1a of a SOlld cxplosive itself

act as a confinement.

In a higher approx1mat10n howovor, Yack of conflnom nt causes cor=

.rections which must be determined. This problem was con51dored by

G. IJ Taylor ond H. Jones in the British reports RC 193 and RC 247 (1941)
‘The authors, however, used a picture of the mechanlsm of detonation that
.differs from the onc we shall evolve, It is proposed to take up this

subgoct from.our p01nt of v1cw in a subsoquent report.

Under-these “assumptions the'proéess of detonation can be treated
onc—dunans1onally, 1.e., we may'dlsrcgﬂrd the coordlnatos 1 ;gjahd treat

cverythlng in tcrms of thc coordlnwte x and of tho time t .
l : )

L



é. e rcutrlct ourselvos mr’cher by assummg; also that the detonation
 wave has rcached 1'bs sta’blonary stage, that 1s, that it moves along w:Lthout
_a.ny change of }ts structural de‘halls‘. |
- Then, ’a.mo\ng, other things, ;t‘ho wavo velocity.mu;t be Qonstzmt in
time, - We now niodify" the frame ‘of/referencé by making ;f.t-s:i';e;, the or\igin
of the coofdinaten-move. along with the wave. To be specific, lot tho origin
of the J&—coo‘rdinate bo‘.vat every moment at the head of the wave. The intact
éxplosive \is to the left of this. In othor -words: | |
(2=-4) The intact ekpldsivg occu_};;ias the spacc X <O
(2-B) The.'detom{:ionni.o., the chomical reaction underlying it=-sots.in’
at x =0, 'fh'is is the hoad of the dotonﬁtio‘n WavCe | |
(2—0) The entire process of dOtOﬂ&thH-*l.O;, the chemical reaction mentioncd -
above-~ocours in suc?ess:.vo stages 1in the space * :*>(,?. The part
of this spacc which itjoccupi‘cs’ is t};e reaction zone. The romoter parts
are ocoupiéd' by the‘ completely reacted (burnv't) prqduc*bs of the detona-

1)

"tion; / the burnt gases. This is the region behind the detonation wave.

1)

This may be truc oxactly, or only ,asymptotically,\

B Thé;'}d@'t_onation wave has o constant veloeity with respect to
. (and directed. tow;ard) ‘the intaét explo’éive; say D. Since thc detonation
wave is at rost .in‘ :ourj fra_mé of“ referecnce, this. mé-'an’sltha’\c' fhe in’ta.otj
‘cxplosive has the velocity D with/ respect tO‘(and directod _tc;warpd) the fixed
head of the wave. That is, at every _po‘in*f; X"-O (in (2-A)) the velocity
of matter is D. (D >0, in the' diroctioa cf the }Soéitivo fx-a;xis'), |

At evory point x >0 (m (2-C)) we have a vclocity of mattor

AL = ,(,((Jé) ﬁ.nd a i‘raotlon n=nlx} ‘)C} 1 expreéssing to What oxtont

)



the chemical reéétionvhas beeﬁ compléﬁed_thore, EETE}, ét x>0 o unif.
mass contaiﬁs n parts of Eurnt gas and len pértslof iﬁtact GXPlosiQO.)
During_the time dﬁ.matter in this region moves byidx,:.‘,ﬁ;ﬂd’c(e So if the
reaction velqcity (under the physioal conditions prevailing ab x) is

1

= Q{ (x) thcm we- have

(3-1) | | (1-:;)%{ 1 L
dl. dx - > o
sl TS A s (1=m) A
.1»7;,;:, 4 Zt;,: _[ - (' m)c{ wg—;;{(:,#l&

L/

&n assuming ‘the- 0x1utencc of a well-defined and stationgry reaction
velocity (i.e., of one which is a numerical constant in time), a deprlfc
physical hypothesis is being made: That of (at least) kinetic quasi
cquilibrium at every point of the reaction. This hypothesis is, however,
a natural one to make, unless there is definite evidence-to the controry. .
And there does not seem to be any so far.

As x ihofeases‘frﬁm 0 towardJ+e§,An increasos from 0.toward 1.
According to the detaiig‘of the.situation,ln mayiér may not reach the value
(completely burnt. gas) for a flnlte x (cf. footnote 1 on p. 7). TWe aésumo
for the sake of 51mp1101ty that the formor 1s ;ho casc, lece, that the
reaction is exactly completed for~a finite x;‘

| To conclude the description of condition in our phonomenons At,.
overy point X L. O~'(in.(2;A)) we have the samo physicai characteristics,
sdy pressure PQ “and §pec1fic vplume‘ve;v.Thesc describe tbe intact explosive.
At every point x>0 (in (2-0)) wé ha?e o pressure P = P(x) and a
specific volume V = V{x). | |
The nature.bfrthe chemical reaction is expressed bj a_fqnctionél

relationship

(=2) =A@V,



9
where, we assume A (n, P, V) to be a lnown function. The stability of
the intact explosive requires
(}3) | A(O,P& WQ::Of |

The nature of the explosive and its mixtures with the burnt gas

is expressede-as far as it interests us~~by ‘its caloric equation for aach

n %0, £1, i.Ce, by the functional reclationship determining its inner
en_ergy per unit mass
(3-4) - e=E (n, P, V)

where we assume E (n, P, V) to be a knowm function.
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4-7 Discussion of the Equationvs. fl'lqe,Chapnlén-Jougu‘et Hypothesis

4, The substance which passes from the 1ntact explosive state-- bhe
space x ¥4 0 in (Z-A)n-through the various phasos of the chemical reaotlon
underlymg the detonatwn——the space X 0 in (Z-C)—-must fulfill the con=

dltlons of oonaervatlon of mass, momontum and energyn Indeed these arc

the mechanlcal condltlons for the sta.tlonarlty of the detonation Wave.1

'l"hls is the class:.cal procedure of Rankine and Hugoniot. . The appll—
cation to all intermediate phases of tho reaction for the purpose of & 1)
structural analysis was suggested by G. I. Taylor and H. Jones, loc, cit.

on p» 6.

Denote the mass: flow——the amoun'b of mat’cor crossing the wave head per

-~

seoond, ;139., the amount of matter detonatmg per uOGOl’ld by}{ Then

'z.znd per unit surfaée of the yrl?:._‘-plane. |

_ the conditions of conservatwn be»comcr

(4-1) £Mass] - 52 ,(& /4 Ny
(4~2) @/Iomentwnj /(‘ (D - ,u, ) ] .
(4-3) @nergy] "/{((‘g 0%+ (0, P, v ) «% ,a,,\ - E(n, P, v)) ~AP -D P
(4-1), (4-2), (4—5) together ‘w1'bh (5-1) (3—2), Adetermme every‘thmg. ‘

But (3~1), (0-2) merely establish the- scale of conversmn of the
two vaf‘lable«s x and n into each‘other. If we ara satlsfled to ube n-—lnstcazl
of x--as the independent variable, then we can roly upon (4—-1), (4--2), (4m3)
alone, If we obtain from them P = P(n), V= V(n) and AL = ALL (n), thon |
(3-1), (3-2) may be stated as

. n
(4-4) x= g T n)‘“gn(n, i
‘i..e.. s, a8 a conversion formula in the above sense.
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This is the procedure which we shall use.

5. The algorithm of solving (4-1), {4-2), (4-3) is well known«
We consider PO,‘VE as given, D,)A{ as unknown parameters of the -

; ‘ v 2
problem,1 and P, V, AL as unknown functions of n (4-1) expresses

1Not dependent upon x or n 1

zInstead of x, of. the end of 4.

D, 4 in terms ofij% .V (Vb is,givm&tx'so that equations (4-2), (4=3)

remain. These are easily transformed into

(5-1) S
\ ""‘““"“*V = /'{ .
(52) B (P+P) (V=7 =-E (0, B, V) +E (a, P V).

Thus lf determines=~for every n > 0,£l - P,V by the implicit
equatlons (5-1), (5=2) - |

The strange thing in all this is that one unknown parameter=-say -
femains undetermined. But the stationary state of the detonation wave of a
definite chemlcal reaction ought to possess--if it exists at all--
unambiguously determined Gharacterlstics. Hence it should be posslble to
formulate somé further coﬁdition which completes the determination df/}& N

Before we consider this,QQestion, however, let us return to (5-1),
(5-2)e |

Their solution cén'be illugtrated'by a familiai graphical method
(Figure 1). |

Plot the curve (5—2), therRankine-Hugoniot eurve, in the P, V-plane,

together with the point Po’ V5; Denote the angle between the direction of
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the negative V-axis end the directiod P_, V,_ ~4B V Bf§ i Then (5:2)

states that P, V lies on the Rankine-Hugoniot curve, and (5-1) states that

(5—5). ' /4;5 t/ ‘bg?j ." D ::.-Vo V 'bg“ (}Q

Thus the unknown parame"bér 7“;? is substituted for.the unknown
parameter/l{ (or D).

This pic'ture should be drawn for each n > QI <; 1, with the same

P, Vo and 9) but varying henkine-Hugoniot curves; and so the correspondinj

o
P, V are obtainéd.l) ‘

- . :
)And the e = ¥ v'tggﬂ

Observe that all these considerations are also valid for n = 0,
in which case they describe *l;heicondition’s under which a discontinuity in
éur substance can exis‘b—-?ﬁri‘bhouf making use of any chemical reaé'bion ati;
all., This pheﬁomenon is parﬁicu’larly important in géSes and iniliq;uids.v
If is known ag M\_/_vg:\_r_e_, and is actually an essential qomponent of* theh
theory of ’che detonation wave.

6. TWhile <}> is undetermined, it is not entlrely arbltra.ry (Figure Z)

To begin with, (5-3) necessitates tg¢ >0, 0 @ must lie in
the Quadrant I or III. :We. have accordingly:

Quadrant I3 P> P ' VeV hence L < D.
Quadrant IIIa P 4 P s, V > V hence L AL Dy
In Quadran'b I the burnt gases are carried along with the detona-

tion wave (1.9., D~ ,&L 70) the:.r density and pressure are higher “than

“those in the explosive. ‘This is detonation proper.



In Quadrent ITI the butnt gases are streaming out of tho
explosive (i.ce, D =~ 4<0); their density and pressure are lower than

. ‘ g
those in the explosive. This is the process commonly known as burning,

We are interested in the process of detonation only, so we assume

in Quadrant I.

Now our tfeatment of the.c':hemical" reaction (cf. in particularl))
on page 8) compels us to poétﬁlate for each n =0, £ 1 the existence of
a well~dcfined physiodi state, fulfilling the requirements of the theory
of 4=5. Thorefore (y must be at least the anglo Cﬁ,{of ‘the tangent
'f‘rom P, V to the Rankine_—-Hugoniot durve. For g‘)z. 439“ the line on which

° o i
P, V should liec doss not interscct that curve at all, Fof'qf);' qr\ the

situa’éion is uisually this: If q’ﬁ (})n then therc exists cxactiy one velue

" for P, V, 'thé tangent point X; if‘??%thon there exist exactly two wvalues

for P, V, the lower interscction point Y and the upper intersection point Z.

.Wg 8.5 sume these qualitative conditions~-as éxhibited by Figure 2--to hold‘
for the Rank‘,in_e-Hugoniot curves of ell n. | |
7 7. These consider’ations were originally applied to n ::.‘.‘1 onlye
| (cr. _howc.ver‘ fqoi‘;no‘te 1. on Pe 10) The lower limit f‘or'(:‘Pis, then g? = i}f: s
‘ché ‘dirget-idn of the tengent to the Rankine-Hugoniot curve n = 1.

The classical thoory of dotonatlon is based on the assumpbtion
that the ac’cual value of j@') is this lower limit. (/‘@ . ‘]3}13 ;s the so-called

1)

_hypothesis of Chapman and Jouguet, ' Various"thcoré'bical motivations have

1%‘01' this, and several references in what follows, cf. “the rcport of )
6. B. Kistiakowsky and E. Bright Wilson, Jr., "The Hydrodynamic Thoory

of Dotonation and Shock Waves,™ OSRD .(1941). This roport will be quoted
as K. W.»  Concerning the Chapman-Jouguet hypothesis‘, cf. Ks Wi, Scc. 5.

N
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been proposed for.this hypothesis, mostly based on c¢onsiderations of

sta.bili‘uy.l )

lli’o'r a sulmaty of. Ki Wi, Sece 5, ppi 8-11.

The expezfiméntal evidencc is not easy to appraise, since the question of
i'bhe. validity of this hypothesis is intertwined with uncertainties concorn=-
ing the caloric equations of the substances involved under the oxtreme
conditions in a detonatione |
We propose to carry out a theoretical anélysis of the Chapmen-

Jouguet hypothssis by a study of the Rankine-Hugoniot curves for all
An z‘-O'lﬁl’ isce, for all intermediate phases of the rcaction. It will
be seen that a proper understanding of the situation with the help of the
gurve n = 1 alone--as attempted always heretofore--is impossible. It is
necessary to consider the family of all curves n g 01- g:l. By doi:gg this
we shall sﬁpply the missing condition mentioned in 5 (after (5-1), (5=2)),
1eee, dotormino @ (that is ¢, D).

For cortain forms of thc family of all curves n Z Olé" 1 the

Chepmen~Jouguct hypothesis will turn out to be true; for other forms it

is falso and another (higher) value of ?/ will be found.
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8-9 General Remarks

8., The discussion ar the end of 6 showed that we must have ?; Q/n '
for all n ?Or)é_.l. Now the Chapmen-Jouguet hypothesis is based on the
considerations of the Rankine-Hugoniot curve n = 1 alone, and it consists

of assuming q/ = ?' . Hence it is certainly unacceptable unless % z %

for all n 701, gl. Tecet - Unless @y assumes its maximum (in 0 £ n §1)

for n=1. Or in a more geometrical form: Unless cvery line issuing from

the point P,, V, which intersects the curye n = 1 also intersects all other

curves n Z. 01 yEL.

We illustrate this condition by cxhibiting two possible forms of
the family of all curves n go‘)gl (Figures 3, 4):

The condition is fulfilled in Figure 3, but not in Figure 4.

From a purely geomctrical point of view thosc two forms are not
thé only possible ones for the femily of curves n Z 0! <1l. Wo shall not
attempt to give here a complete enumeration. - Tho main question in this
connection is, how“-over,i which forms of this family occur for rcal explosives.
We ‘shall., takc up this qucstion in a subsequent investigation.

& 9. We shall obtain the missing condition for y‘ repeatedly mon-
tioned bofore. This derivation will differ essentially from the existing
analyses, since those make u‘sc‘of the curve n = 1 only., (For this, and for
soxﬁe of the remarks which follow, cf. footnotc 1 on pe 14). Therc is ncver-

theless one element in those discussions which deserves our closcr attontion.
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The discussions referred $o treat the upper interseetion points Z

and the lower intersection points Y separately.l) That is, in order to

1)Cf. our Figure 2, or K, W., Figure 5-3, pe 8

establish the Chapman~Jouguet hypothesis=-i.e., the tangent point X--the
7 and the Y are ruled out by two separate arguments, We saw in 8 that
the Chapman-Jouguet hypothesis cannot bc always true; hence the arguments'

in question cannot be conclusive.l Our considerations will prove that the

st

1)Cf. also K. W,, bottom of p. 1l«

exclusion of the Z on the curve n = 1 must Ee maintained, but not that of
the Y.

Thus the first part of our analysis will bc reostricted to the
curve n = 1 and on it to the upper intersection points Z: proving that they
cannot occur. In doing this we shall usc a line of afgument which is closely
related to the traditional one referred to above, even to the detail of
being based on a comparison of the detonation velocity to the sound velocity
in the burnt gas behind it.z) In spite of this similarity, howevcr, the two
argunontations are not the same: The traditional one is, as mentioned

2)

before, essentially one of stability, “while ours is purcly cincmatical.

Z)Cf. KrWr, PPe 89

It is actually closer to a viewpoint which has been put forward recently by

G. I. Taylor.s)

—g)British report of G. I. Taylor, "Dotonation Waves," RC 178 (1941). This
report will be quoted as T.
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‘In other parts of our analysis we shall have to consider all
curtves n 3:(%t;;1 aﬁd their positiohs rGiﬁfiV@ to cach other: This is
égssontially difforent Prom the ¢xiéting analyses referred Lo above.

On one occasion wc shall consider the possibility of a shock

wave in the reaction zone ond the change of entropy which it causcs. This

phenomenon has been investigated in conncction with the Chapman-Jouguet

hypothosis,l)but in a different arfangement: In o stability consideration,

1)Cf‘. Ke We, ppe 92, 11,

in order to exclude (on the curve n = 1) the lower interscction points Y
aléo, to prove the Chapman-Jouguet hypothesis. Our procedurc again is not
one bamed on stability, and besides we use it for a different purposc.
Furthermore we shall find that under certain conditions the lower inter-

scction points camnot be disrcgarded.
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10-12 Conditions in the Completely Burnt Gas

10. Let ﬁs cons.ide_r the state P,V at n = 1, which is a point on.the
Renkine-Hugoniot curve n = 1.  This is the ba‘cl%: end of the reaq‘bion Zone,
where the chemical reaction is just completed (eof. (2-C)). We use the framo
of reference in which the deténati;)n wave~-and hence this particular point
too--is at rests Consider now the conditions behind this point P (Figurc 5):

In order to complete the picture we must remember.that the o
cxplosive was assumed 'bo be completely confmed (cf. 1); hence it is logical

to assume a back wall behind it, say at Q. 1) This back wall is at rest in

1)]Zf the explosive were unconfined et Q, the conclusions of thesc

would probably be valid a fortiori,since they demonstrate the necessity
of a rarefaction wave in the burnt gases under certain conditions

(cf. 12). But we prefer to restrict ourselves to the case of absolute

confinement,

-

the original frame of:referenoe in which the intact exploéive is at rost;
in our present frame of reference the mtact explosive has the velocity D
(cf. the bcglnnlng of 5), and therefore the seme is truc of the back wall Qe
So ’chg burnt gases 11e_between the points PI'Q’ which move with
the velocities 0,.D, respectively. The gases’ S’éream across P with the
velocity M=V tgg? (cf. footnote 1 on p. 12)4 while Q is an cnclosing
wall,
The phénomemon is cortainly not stationary in Pl- Q, since P and
Q.r.ecedo from each‘ other; but we assumed it to bo stationary in the rcaction
zoﬁe 0., P. Im PIQ" on the other hand, no chemical reaction is going ohs.

The gases there are complétei—y burnt.
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“The question is whether the necessity of fitting a gas-dynamically
possible state of motion botween P and Q imposes any restriction on the
state at P, i.c., on the interscction point on the curve n = 1.

An answer can bo obtained mathematically by integrating the

differential ecquations of gas dynamics in PlQ.l) But it can also be found

3 | .
1’Dhis is actually contained in the computations of T., pp. 1-4.

by more qualitative considerations, which we shall now present.

11, Consider the stretch 0,Q in the original framc of roference in
which the intact explosive and the back wall at Q arc at roste. Through-
out the entire period of time in which the detonation progressed from its
start‘at Q to its present head at O the explosive to the left of O remained

2)

intact. Hence no substance was transforrcd from one side of 0 to the other,

2)0 is now at rest with respect to the intact oxplosive!

apd sg‘the total mass in O;Q was not changed. Therefore the average don-
sity.in OlQ was not changed either--i.e., it is now, when.the wave head 1s
at O, thé same as it was when the detonation started at Q-~il«oe., the same
as in tho intact explosive,

The specific vo}umes in OJP are the V on the linec of Figuroe 2,
from Po’ Vb to X or Y or Z, as the case may be; hence all smaller than the
specific volume V6 of the intacﬁ explosive. Iece, the density.in OlP is
everywhere greater, as in the intact explosive.

Hence the average density in PIQ is lower, as in tho intact

explosive, and a fortiori as at ﬁf' Consequently we con asscrts

The density at P is greater than in some plages in PlQ'
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Lot PT bo the piace (in P’Q").whcre the density begins to fall

below its value at P. 1) The donsity, i.cs, the specific volume V, is

i

el 45 B, or to the right of P.~

:“ 5 . T

therefore constant in PlPl,

12, We now return to the frame‘of roferonce of 3=5 and 10, where
tho wave front O--end so the geomctrical locus of the roaction zonc O P--
is at rest,

2) - 3)

V is constant in PlP]'; hence the same is true of 4 and P,

2‘)']?»ece.urse of the conservation oi‘ ness, iece, (4=1) or.footnote 1 on p. 12.

L7>}Becemse of the adiasbatic law, which holds throughout P Q, since thore
are no chemical reactions or shock waves there.

Ny

Loy " h—— i

and, along with P1V, of the sound wvelocity € .4:)

W o o —— oo o " -

4)

We measure <« with respect to 'l:he gas, which itself moves with the
velocity ,(4- .

By its definition, Pl 15 the head of o rarefaction wave looked
at from 01 Pl P . Hence moves with sound wvelocity towards Ol 1:’1 Pl, iecay
the veloci’cy of P1 is 4t~ ¢ . We know that we may take thisut-C at P

instead of Pl, and that AL -2 teken at P i~ constant in time.S) Hence

5)The zone O,P is stationary!

"
wh

AL-C < 0 would imply that Pl will reach and entor the zone OlP in a

finite time, thus disturbing its stationarity. Hence . -C ¥ 0, l.e.,

(_“:-ﬁbb at P.



Let us now conéide’r Figure 1, tgkin’g n = 1 for its ciir've;
=V | ’cgyy (of. footnote 1 on p. 12), and §igtoo can be expressed
in terms of this figures Denbte the angle between the direction of the
negative V-axis azhd thea direction of the tangent of the curve at: PIV by X .
We claim that € =7V /tg X . This can be established by a direct thermo=

1)

dynamical computation, ond also by a more qualitative argument which we

1}qu KC WO\’ ppo 9"11[

—re

shall now give.

'.'.I‘he line Po‘)vo — P}V‘represen’cs a detonation wave ending with

the burnt gase. Therefore a line Piv]‘.._,plv where both poiﬁts P;VJ and

P1V lie on the curve n = 1, represents a discontinuity which begins and -’
ends in the burnt gas, iies, a shock wave in it. If P VI
2) ~ ‘

Involving nc chemical reactiont

2

And the shock wave tends to a very small discontinuity, i,e., it becomes

’

moves very close to PIV then this dlrect:mn t nds to the tangent at P.V,

very weak., Now the velocity of a very weak disturbance is very nearly
sound velocity. Hence (_‘. 1}{ are connected in the burnt gas in the semo
way as Dy 99 were in the intact exploésive. So the D = v u tg ¢ of (4~1)
becomes ¢ =7V ZV tg % . ‘

Thus our C?M besomes V ‘1 X &V V tg ? » lyca, Z < 9
In other Words: '

The direction P _,V P V cannot be less steep than the

o 7 % s

dlrectlon of the tangon‘c to the Rank:me-Hugonlot curve n = 1-—i.e., the

direction of the curve itself--at PV,
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One look at Figure 2 »suffices‘ to show that this tieans the exc¢lision

~of the upper intersection points Z on the curve n = 1.1 We pestate thise

l}'As mentioned in footnote 3 on p. 16, the computations of T., pp. 1-4,
prove the same thing. The state in P, Q (cf. Figure 5) for the tangent

' point X or a lower intersection point ¥ (cf. Pigure 2) is exhibited by
Pigures l-b. and l-a, respectively, in T. '

The state P(n)f V(n) at n = 1 which lies on the curve n = 1

cannot be an upper intersection point.
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13~-15 Discontinuous and Continuous Changes in the Reaction Zonec.

Mechanism which Start the Reaction

13. We turn next to the consideration of the Rankine-Hugoniot

curve for alln 0, <1,

2

The state at the point of the reaption gone with a given n g'.s
characterized by the ‘datva P(n), V(n) and 4«(n) (cf. the end of 4)., These
points P(n), V(n) for n Z04£ 1 form a line .;/,’Z in the P_1 V -plane, the '
line r‘epresenting the successive states acroés the reaction zone (cf. the
end of 12); |

This line /l ﬁus‘c intersecﬁ the cufve of every n 201 :él If
this ’in‘t@rSection ocours in a (unique) tangent point, “then that is P(n),

V(n); if it occurs in two intersection poin»ts--the upper and the lower=- -

then one of those is P(n), V(n). Let us now follow the history of P(n),
V(n) as n .;i.ncreasés from O to 1. Ab |

To begin with, thore is no absolute reason why P(n), V(n) should
vary continuously with n. Consider now an n, where they are idiscon‘cinuous.
Follow the path of matter (in the.detona.tion) which crosses that point of
‘“the rcamction zone. It moves in the direction of the progressing chamical
féabtion, i.c., of am increasing n. The discontinuity of P(n), V(n) noces-
sitates that these quantities have di‘i‘fer.e:flt limiting valucs, as n is
approached on the incoming side from bclow, and on the outgoing side from
— Both limiting positions of P(ﬁ); V(n) must be intersecﬁons of A

with the curve n . So they are the upper and the lower interscetion
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'pointil)the question is onlyw which‘is whidh?

lw’And we do not have thé tangent p051tlon!

The two intersection points of in on the curve g reprosent the

two sides of a shock wave;z)indeed our sbove description of the situation

2

Cf. a similar discussion in 12,

at no'makes iﬁ clear that there is a shock wave at the poin# n of ‘tho
reaction zones |

Now itvis well kmown--for thermodynamical reasons, but also
intuitively plausible--fhat in é shock wave the high=pressure arca alwﬁys
absdrbs the subsﬁanoe of the 10wapressure arca, il.6., that matter passecs
3)

from the low-pressure state 1nto the high~pressure state.

/

3)The'thermodynamical reason is that the entropy is higher on the high~
pressurc side. Cf. K. W., pe 11, For a discussion of this property of

- shock waves cfe c.ge Jo W. Rayleigh, "Aorial Plane Waves of finite
Amplitude," Sclentlflc Papors, Vol. 5, Cambridge (1912), partlcularly
pp. 590-591. '

In the present case ﬁatter-moves in thc direction of increasing n
(cf. above). Therefore thé lower‘intersection point is the limiting posi;
“bion when nd is approached from below, and thq upper intersection point is
therlimitingAPOSition when n  is épproadhcd from abovce.

Summing ups |

The- point P(n), V{n) varies continuously,. except for possible

/ jumps from the lowor to the upper intersection point which occur=-if at allw-

always in this direction with increasing n.
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i4. Lot us consider the conditions at n = 0, iecs, at the head of tﬁe
wave. The state there adjoins tThe Po’. Vo of the intact exﬁlosive which
hes on tho curve n = 0. '
| Assume flrét that the variation of the P(n), V(n), at this point
is continuous, i._e.., that Po’ Vo is the limiting posltlon v_srhen n approachcs
0 from aboves
In this case ’cheré isv no agent to start the chémical reaction
which supports the detonation. ‘"This reaction ought to set in, and quite
.vchemen’cly atn =0, 1.0., for small values of n» 0, Or, if we usc the
independent variable xt at x = 0, i. Ges for small values of x>0. Now
the assumed‘ coritinuity meang that the COl’ldlthl’lS in this critical zono=-
the beginning of the reaction zone--differ only insignificantly from
"those at Po’ Vo, lece, throughout +the intact explosivé (in x <0). Thu>s
the rea:ction can?zét start in this region. If it did--for any reason
whatever~--it should a fortiori have done so "ll’l tha intact oxplosive
(m sz.O). There was much more time available there, and yet, by
: "assixmption, no reéction!
This argu.ment is qualltatlve, to be sure, but it is quitc easy

to ampllfv it mathematically. 1}

1)

Consider the formula (4-4) which expresses x in torms of n. If wo
have continuity, iece, if n —» 0 implies P~#P , V—»V , then (3=3)
yields A (ny Py V)—20. 8o we must oxpect div%rgence 8¢ the integral
- (4-4) (necar™m = 0), and failure to obtain an acceptable x.

- This is, of course, not essentially difforent from the Text!s
verbal argument: We cannot make x-90--nor cven x -3 finitc for
n —% O-=i.e,, the reaction cannot be started on any finite interval.

Thus we must have a discontinuity at n'= O. By the result of

13 this mecans:
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PO, V must be, the lower: 1ntersection p01nt and as n 1ncroasos_

(from.O on), P(n), V(n) 1mmcd1ately Jumps to thh upper 1nterscct10n
F A 2 JL A‘)‘Q ;_*_ b i

p01ntéisay P s VQ--and goes on don%inuously from tho?e.

- Thus the réaction zone‘sets in with a shock wave, an abrupt
inérease of P,;and'with it an oqually abrupt decrcase of V (cf. (5=1))
and of AL (cf. footnéte 1 on.p. iz);

These abrupt changes of P, V may start the reaction, particulariy
‘because they ihply usually an increase of the temperature.‘ But the change'
of AL 18 evén more remarksbles This déoreasevfrom D to ,¢L° means, of
course, that tﬁevintact explosive (in x<0) receives a vehement Elgﬁ; '
‘delivefed by the wave head with the veloﬁity. | |
W= D —‘xg>°.

Using (5 1), (5=3) and footnote 1 on Do 12, we 506 that

(14-1)' w=Dw &° = (1- .)D::(V v°)}u—~ VfP-PO)(V v)

This. ve1001ty is smaller than, but in the order of magnltude of, the
detonation velocity De It is comparable to the thermic agitation of a
very hlgh temperature, 1ndeed it may be more effootive, since it is

dcllvered with one systematlo veloclty, and not in statistical dlsorder.l

.

s

)For a typlcal high explosive, ‘like TNT, D ~ 6,000 m sec"
w 1,500 m sec” =1 50 that the corresponding tomperaturewnould be
~r 2500° = 5ooo° centigreade, _

discontinuify of the velocity provides at any rate the mechanism needed

2)

to start the roactions

2)Th1s view would nocess;tate a modification of (4-4), but in a favorablc
. senses towards even sma11er changes of x in the neighborhood of n = O.
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15, We know from 13 that Pln), v(d) is immediately afted a
: di'scontinui’cy at -an upper inters’erct'ioﬁ point. We also know froms 12
that the latter cannot be the case at n = 1. We haves

P(n), V{n) is continuous at n = 1, in the position indicated

in 12.

We are now informed about the behavi@;'of P(n), V(n) atn =0
and nf; 1,'and also at discontinuities for n ??OI < l. There remains
only the necessity qf discussing its behgviér when it varies gontinuously
near sn n o> 01 = 1. We are‘particularly interested how--—if at all--A

it cen change under these conditions from an upper intersection point

to a lower onc, or vice versa.
. A ——

]’}The‘first change (for n increasing) actually excludes a discontinuity
according to the result of 13,

Let us therefore consider such - change. If P(n), V{n)
changes at n = n, (no == 01 42.1)_ copﬁinuously from an upper intersection
point to a lower ome, or v:'Lce‘iversng, fhen it is necessarily ' a tengent
poj.nt at n . |

At this juncture it 'beooné.e‘s ne%;essa:fy to- in’cz_"bduoe the envelopo
- of the f'amily of all curves n %Q;él. '%‘his’ envelope may or may not
gxist (cf.’ Figures 4 'and 3 for these two alﬁe'rnatives', re-spectively_).
At eny rate, 1f the tangent point which we are now considering is not

on the envelope,z then the position of the curves for the n near to ng

i)

This is meant to includé the case where the énvelope does not exists

'is this (Figure 6).
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Thﬁs the curvos with n :n-n are all on one side of the bufve
.and -the curves with n«n, are all on the other sided Consequently the
line J’j,does not intersect that one of these two curve systems which is
on the concave_side of'the ourve 1. But.g{( must,intersect'the curves of
all n (ef. - 8), So we have a contradiction. | | |

_ Hence the envelope must exist, and our tangent point must lie

on it. ‘At this poinf #/jzli§ taﬁgent té the ddrye‘no. But the envelope
)bas at each one of its points the same fangent as that curve n of the
family which‘ﬁoucheslit there. Hence 4/{7 is also a tangohf for the envolope.

Summing up.: |

If P(n), V(n) changes at n = n (n = Q.= 1) oon+1nuousiy

b .

. from an upper 1ntersectlon point to a lower one {cf. footnote 1 on D 27),

thens

A} The envelope of the family of.all'curveo o exists.

B) The polnt P(n ), V(n ) 1108 on the cnvelope.

¢) The line 4/1 is at thls p01nt tangent to both the curve ng_fnd

to the envelope.

It is easy to visualize that if the point P(n Vs V(n ) fulfills
B), C), then the change from an upper to a 1ower_1nters¢ct1on, or vice versa,
cen be effected continubusly (Figure 7, Cases 1, 2).

But 1L is also 90581ble to have B), C), and neverthelcss no

such change (Flgure 7, Cases 3, 4),
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16 Conelusions

16. The results of | 12, 13, 14 and the ﬁro results of 15 permit
us o form a complete picture of the variations of
By 14 P(n), V(n) begins, for small n # 0, as an upper inter-
asec‘tion“ point. If it stays one for.all n 0,4 ~<1, then 12 a;nd the
first resuit of 15 neces51tate that it termxnate at n =1 as a tangent‘
p01nn. In this case A/i(ls a tangent to the curve n = 1.
If the above assumptlon is not true, then P(n), ¥W(n) must change
(as n increases) from an upper,lntersectlon p01ntuto a lower one, for
some n ﬁ*q*«zzl_. By iS-this must ooéur continuouély»(cf.'alsp!footnote'l
on ps 27), and by the second result of 15 we héve A)-C) there: The
envelope exists, and 4/ﬁ(15 tangent to it at the point in questlon. In
thls case a(ﬁf is tangent +o the envelope,

14

So we. sees

a/ﬁfiﬁ‘téngent,either to the curve n‘= 1 or to the (then

necessarily existing) envelopes

Since ‘the line 4(<{ comes from the given point Py vV, this
- econdition 1eaV§s only a figite number of alternati#es for it, i.c., for:
its angle SF’ with the diréotion of the negative V-axis. So we have
obtained eésentially the missing condition, réferred to at the beginning
of 9 and beforcs v | |
| " Indeed, whon the envélope dées not exist (as in Figure 5),vthcn

we see that must be tangent to the gurve n = 1, proving the Chapman-

Jouguet,hypothcsls. We restate thls-
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CIf the envelope does not ex1qt—-i 8., if the curves for all n

do not intersect each other (of. Flgure 3)-~thon thc Chapman«Jouguet

‘ hypotbesls ;s trﬁe.

o 6n‘thn other hend we saw a -case in 8 in which the Chapmen-
Jouguet hypothesis cannot.be ﬁfﬁe. Then the envelope must exist, and.g(tv
must be tangent to 1t. | | |

Wé leave it to the reader to discuss the detalls of the solu-
“tion in varlous typical cascs, €ege in Figure 5 (the Ghapman-Jouguot
hypothesis is true), and in Figure 4 (the Chapman-Jouguet hypothesis
is not true). Tbc results referred tovat the‘beglnnlng of 16 are all.

that is needed in all these‘cases.



- Figure 1 (p. 11)

P

Figure 2 (p. 12)

.
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Figurc 3 {(p. 15)
544-; 24

Figure 4 (p. 15)
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Explanstion of Figures 3, 43

The curves.l—l. 2-2, 3=3,
4-4, 5=5 are Rankine-Hugoniot
curves, corresponding to succes-
sive values‘of>n decreasing
from 1 to 0, (1=l isn =1,

55 isn = 0.)

-

el
The line 6("' occupics

the extreme (lowest) position
which intersects the curve 1=-1
(iece, n =1). Tais is the
position determined by the
Chapman~Jouget hypothesise

In Figufe 3 this line inter=
sects all curves. In Figure 4

it docs nob; the cxtreme (lowest)

1ine which intersects all curves

is M)%
¢

In Figure 4 the family of

curves has an envelope, marked

2



Figure 5 (pp. 18=20)

Head of End of the Back
the Wave Reaction Zgne \%MA1‘*J

\u——ﬂv—-/) \/Xq-s\ '&-\'l‘._
~— Intact Explosive«Jf—~ Resction *&»— Burnt Gases ——%

Zone
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Figure 6 (p. 27)
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Pipure 7 (pi 28) | ' Explanation of Figure_}_zi

a=g8, b=b are the curves n no;

away from no) .

o'
N mnapn

*The envelope is

P(n), V(n):

u
A

u

tinuous,

// P(“s yWingy

a

A w X e Darve the .
A - X %‘f# | 4are the curves n..m e

(Both times in the order of going

[
i ’
. ;

.

This is the variation of the point

- Case 11 Upper -+ Lower:
R A AN bi._
Case 2: Lower -y Upper:
I “ " u
Case 33 Upper —7 Upper: |
Case 41 Lower -—7 Lower:
7K, 77 0 7T amyhy .

All four types of variation gre con-
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